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explained by the omission of the slight correlation 
between the structure factors in the least-squares 
analysis. The agreement of the estimated standard 
deviations is of great importance. In the integrated 
intensity method the e.s.d.'s are evaluated from the 
least-squares residuals whereby the uniform underesti- 
mation of the variances is insignificant. Hence, the 
variance estimates obtained by the profile-refinement 
method are reasonable, which can be explained by a 
diminution of the influence of the correlation when the 
spectrum comprises a large number of separated peaks. 

6. Conclusions 

The results of the present paper demonstrate that 
reverse time-of-flight diffractometers with Fourier 
choppers offer a useful means for structure analysis. 
The ultimate accuracy obtainable with this white-beam 
technique is determined by the precision of the incident 
neutron flux estimate, which must, therefore, be taken 
into account in a proper analysis. 

The theoretically rigorous method for the refinement 
of diffraction data measured with the correlation 
technique was considered impracticable, for which 
reason the ordinary method was applied yielding 
unreliable estimates for parameters evaluated from only 
one reflection. Fortunately, a powder diffraction pat- 
tern contains a large number of peaks so that reliable 
estimates can be obtained for structural parameters, 
but nevertheless part of the high efficiency of cor- 
relation methods will be lost on account of the cautious 
interpretations. 

The authors wish to thank Dr P. Hiism~iki for many 
helpful discussions and Mr H.-E. Karlsson for his 
valuable assistance with the experiments. 
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Abstract 

A statistical distribution of ions M in lattices or partial 
lattices o~[A ~_xMxLm] of mixed crystals being 
assumed, the probability functions PJV)(x) for single 
coordination polyhedra ML n (j  = 1), pairs Q" = 2) and 

0567-7394/80/020259-07 $01.00 

larger clusters o f M L  n groups (j  > 2) in 1D (v = 2) and 
v-connected 2D systems (v = 3, 4, 6) are calculated. On 
raising the connecting number v, increasing cluster 
probabilities are distinctly shifted to lower concen- 
trations x of the foreign ion M. For a relation between 
the numerical values P(x)  and experimental results, the 
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260 STATISTICS OF ION DISTRIBUTION IN 1D AND 2D MIXED CRYSTALS 

mixed-crystal series (BaF)z[Zn~_xCuxF 4] of a four- 
connected 2D structure is given as an illustrative 
example. 

Introduction 

Replacement of closed-shell cations in a matrix 
compound by transition-metal ions is a useful means of 
inspecting the symmetry of lattice sites by spectro- 
scopic techniques. This method is valid if the transition- 
metal ions with their specific electronic properties are 
able to accommodate themselves to the symmetry of 
the lattice sites into which they are incorporated. If 
these ions, however, by virtue of a peculiar electronic 
configuration, exhibit an obstinate symmetry behaviour 
(well known as the Jahn-Teller effect), cooperative 
interactions between them may result in a macroscopic 
distortion of the given host structure at higher 
concentrations. Symmetry effects of such a kind have 
been found, for instance, by Reinen and co-workers in 
Cu2+-containing mixed crystals such as Sr2Znl_ x- 
CuxWO 6 (Reinen, 1968; Friebel & Reinen, 1969), 
Cr2Zn ~_xCuxO4 (Reinen & Grefer, 1973), or 
Ba2Znm_xCuxF 6 (Friebel, Propach & Reinen, 1976). 
Here the question arises as to which kind of clusters 
and which distributions of clusters are present in the 
concentration range where cooperative Jahn-Teller 
interactions between the Cu 2+ ions start. This question 
suggests a general mathematical treatment of the 
problem of ion distributions in different structure types. 

Provided that the distribution of cations incor- 
porated into well defined sites of a host structure obeys 
the laws of statistics, the probabilities of obtaining 
isolated coordination polyhedra of these ions and 
smaller groups consisting of two to about six polyhedra 
linked by common corners, edges or faces can be deter- 
mined without too much exertion. The calculation of 
these probabilities as a function of the structure type 
and the ratio of the mixed ions has yielded some 
remarkable results, presented in this paper. Restricting 
ourselves to mixed crystals of one- and two-dimen- 
sional structure types, we define these as containing 
infinite structural units oo[Al_xMxLm] (neutral or 
charged), forming chains and nets, respectively, in 
which the ions A of a matrix compound are substituted 
partially by foreign ions M (L being any ligand coor- 
dinated to the mixed ions). The more sophisticated 
statistics of ion distribution in three-dimensional mixed 
crystals (framework structures), which would find a 
useful application, for instance, in the widely in- 
vestigated perovskite ferroelectric PbZr~_xTixO 3, will 
be discussed in a later article. 

Ion distribution in ID mixed crystals 

If the very simple case of a mixed crystal containing 
infinite chains ~[AI_xMJ_, m] of two-connected coor- 

dination groups of mixed ions A and M in statistical 
distribution is taken as the starting point, the proba- 
bility Pj of finding units of isolated ( j  = 1) or linked 
ML,, polyhedra Q" > 1) is given by the simple 
expression 

'P}2)=jxJ-'(1 - x ) 2 ;  0 < x < 1. (1) 

Pj is marked by a prefix giving the dimension of the 
structural unit and a superscript to the right giving the 
connecting number v, i.e. the number of equivalent sites 
adjacent to the coordination polyhedra A(M)L,, (cf. 
Fig. 2). 

If M belongs to a finite chain o f j  ions M, j - 1 sites 
of this chain adjacent to M are occupied by M also and 
two adjacent sites by A; hence these two quantities 
appear as exponents of x and 1 - x, respectively. The 
additional factor j in equation (1) arises because each 
M of the chain may be considered as the original M. 
The summation of the probabilities with respect to j 
necessarily results in 

oo ip)2) 
Z = 1. (2) 

j = l  

1p)2) as a function of x is drawn in Fig. 1 for the first 
seven j values. The remaining probability for all M 
belonging to chains of more than seven coordination 
groups is shown in Fig. 5 and will be discussed below. 
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Fig. 1. The probability functions ap}2~(x) for single coordination 

polyhedra M L  n ( j  = 1) as well as for pairs ( j  = 2) and clusters of  
1_ 1-xMxLm 1" 2 < j < 7 ML n groups in chain structures ~[A 

(a) (b) (c) 
Fig. 2. Isolated sites, pairs of  two and clusters of  three sites 

occupied by ions M (black v-gons) instead of  A (open circles) in 
v-connected layer structures ~[A~_xMxL,,,I: (a) v = 3, (b) v = 4, 
(c) v = 6. 
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Ion distribution in 2D mixed crystals 

If lattices with a two-dimensional network containing 
the mixed ions A and M are considered, three main 
cases of connecting numbers, v = 3, 4, and 6, have to 
be distinguished. Restricting ourselves to the simplest 
periodic networks of v-connected systems in which all 
the polyhedra are topologically equivalent (Fig. 2), 
these three cases are represented by the hexagon, the 
square, and the triangular net, respectively. At each 
point of these nets one could place a v-gon (triangle, 
square, hexagon) or any topologically equivalent 
coordination polyhedron such as a tetrahedron sharing 
three or four vertices or an octahedron sharing four 
vertices or three or six edges (cf. Table 1). 

As illustrated in Figs. 2(b,c) and 3 the arrangement 
o f )  ___ 3 neighbouring sites can be different, giving for 
each v and j a specific number of configurations. All 
possible configurations k) ") must be taken into con- 
sideration, rendering the procedure of calculating 
2PJ")(x) for higher j values rather sophisticated. From 
Figs. 2(b,c) and 3 it can further be seen that the number 
u of'unoccupied' sites (A) adjacent to a cluster o f )  ions 

Table 1. Representative examples, with structures 
based on v-connected systems ~[AL.,], of  coordination 
groups AL.  linked to infinite chains (v = 2) and nets 

(v = 3, 4, 6), respectively (el Wells, 1975) 

rn of 
resulting 

Coordination Connected by oo[ALm] 
v groups AL, sharing v. . .  system ("~ Examples (b) 

2 Tetrahedra Vertices 2/2 + 2 Na[PO31, pyroxenes, 
PbiGeS~ l (c~, Baz[MnS 3 ] 

Edges 4/2 + 0 TI[FeS21 (a~, Bag[FeSzl~6 (e) 
Squares Adjacent centres 0 + 4 [Pd(NH3)41CIz.HzO 

Edges 4/2 + 0 Li21NiO21 u') 
Octahedra trans-Vertices~ 2/2 + 4 TI21AIFsI' (SrF)IPbFsI 

cis-Vertices) K2[FeF ~](R) MnlCrF~ I (hi 
Opposite edges ), 4/2 + 2 NazlMnCl41' Ca21SnO41 

Non-opposite edges) [Zrl41~L CalTeO4} ('~ 
Faces 6/2 + 0 CsINiFjI, Ba[CoO31 ~ 

Elongated Vertices 2/2 + 4 CszlMnF~I.H20 ") 
octahedra Edges 4/2 + 2 Na21CuF 41 

Faces 6/2 + 0 CslCuC131 
Dodecahedra Edges 4/2 + 4 KzIZrF 61 

3 Tetrahedra Vertices 3/2 + 1 RblBezF~], Na~[SizO~l, 
AI~(OH)~[SizO~ I 

Octahedra cis-Vertices 3/2 + 3 Cs~[BizBr 91 (") 
Edges 6/2 + 0 [CrC%I,[AI(OH)~I 

(SiOL~)[A10(OH)zl 

4 Dumb-bells Adjacent centres 0 + 2 Na~[HgO~l, 
KzlNiO~l ("~ 

Tetrahedra Vertices 4/2 + 0 Sr[ZnO2i 
Octahedra Vertices 4/2 + 2 TIIAIF41,a-SnIWO~i(°L 

K~INiF~I, (BaF)~[ZnF~I, 
Rb~IMnBG I (~ 

6 Octahedra Edges 6/3 + 0 [CdClzl, (LaS)[CrS2I (qj 
Trigonal prisms Edges 6/3 + 0 IMoS21 

(a) Specified as sum of shared and unshared ligand atoms L. (b) References, unless 
otherwise cited, are given by Wells (1975). (c) Ribes, Olivier-Fourcade, Philippot & 
Maurin (1974). (d) Zabel & Range (1979). (e) Hoggins & Steinfink (1977). ( f )  Rieck 
& Hoppe (1972). (g) Vlasse, Matejka, Tressaud & Wanklyn (1977). (h)F+rey, de 
Pape & Boucher (1978). (i) Krebs, Henkel & Dartmann (1979). (j) Hottentot & 
Loopstra (1979). (k) Taguchi, Takeda. Kanamaru, Shimada & Koizumi (1977). (/) 
Kau6i6 & Bukovec (1978). (m) Lazarini (1977). (n) Rieck & Hoppe (1973). (o) 
Jeitschko & Sleight (1974). (p) Goodyear. Ali & Sutherland (1979). (q) Kato & 
Kawada (1977). 

M is a variable depending on its specific configuration. 
A principal characteristic of each configuration is its 
point symmetry. Different point symmetries render 
possible several non-equivalent orientations of identical 
configurations; hence the probabilities 2pj~) are 
modified by a 'symmetry factor' f as an additional 
variable which depends on k~ v). Both parameters u and 

f a r e  listed in Fig. 3, where all configurations for groups 
o f )  = 4 neighbouring sites with the connecting number 
v = 4 are given. The following general expression for 
the functions 2P s giving the probabilities for clusters o f )  
neighbouring sites occupied by ions of the same kind in 
2D mixed crystals is valid: 

zp}v) =jxJ-I Z f ( K ) (  1 _ x)U(IO 
K 

= j x J - ' ( 1  - - x ) W ~ f ( K ) ( 1  - - x )  -au(r), (3) 
K 

u k~ (~) s f 

10 ~ Cz,, 2 

C s 4 

C4v 1 

Fig .  3. Complete set of  configurations k) v) in a tetragonal 2 D  
s y s t e m  (v = 4)  for  j = 4 [u = number o f  'unoccupied' sites 
a d j a c e n t  to  k )  v), s - -  point symmetry of  k) ~) (Schoenflies s y m b o l s ) ,  

f = number o f  possible non-equivalent orientations of  k )  ~) 
( d e p e n d e n t  o n  s)].  
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Fig.  4. The probability functions 2PJv)(x) for single coordination 
polyhedra ML n ( j  = 1) as  wel l  as  for  pa i r s  ( j  = 2) a n d  clusters 
of  2 < j < 7 M L ,  groups in v-connected layer structures 
2[A,_xM~L. ,] .  
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where 

/ ~  = kT' ,  u = u ? ' ,  w = w p .  

Moreover the parameter u(K) has been separated into 
one part (w) independent of k) ") and a second compo- 
nent (Au) dependent on k)"); w is the maximal number 
of unoccupied sites adjacent to the cluster. Admitting 
linear configurations only, one obtains: 

v 2 3 4 6 

w}v~ 2 j + 2  2 j + 2  2 j + 4 "  

Equation (3) differs from equation (1) merely in the 
additional summation over all possible configurations 
and their orientations. It should be mentioned that the 
number f of non-equivalent orientations of any con- 
figuration k} ~ is correlated directly to the Schoenflies 
symbols C, and C,~ (the symmetry C~ corresponding to 
n = 1) by v/n = f ( F i g .  3 and Table 2). The increasing 
complexity of the numerical expressions of equation 
(3), i f j  is increased, becomes evident from Table 2 in 
the Appendix where the sums over all configurations 
having identical numbers of unoccupied adjacent sites 
and identical symmetries are given. On the basis of this 
table the probabilities 2p}~) have been computed as 
functions o f x  and drawn in Fig. 4. 

Discuss ion 

Figs. 1 and 4 demonstrate how the probability for 
isolated coordination polyhedra ML, in a matrix 
compound decreases with (1 - x)  ~ if the concentration 
x of M is raised. The probabilities for pairs of two and 
for clusters o f j  _> 3 coordination groups run through 
maximal values of p}v) at definite concentrations x} v) 
which increase i f j  is raised. The corresponding data are 
indicated in the graphs (Figs. 1 and 4). With increasing 
v the probability of cluster formation is shifted signifi- 

10- , . . . . .  

2. 091 

~-  0+4 ~:7 °N,% t 
J'°+l 

Oa ! 

02 
0.1 
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0 02 04 06 08 0 
,, X 

Fig. 5. The probability functions Pt/)(x) for all clusters consisting 
of more than c = 7 coordination polyhedra ML, in ID (v = 2) 
and 2D (v = 3, 4, 6) mixed crystals containing chains and layers, 
respectively, of oo[A l -xMxL,,,] units. 

cantly to lower x values and this is demonstrated in 
Fig. 5 (c = 7) by the probability functions 

P~c ~' = 1 -- ~ P)~). (4) 
j=l 

This expression gives the probabilities for clusters 
consisting o f j  > c coordination polyhedra. From Fig. 5 
a relative statement can be made about those 'critical' 
ion concentrations in mixed crystals, at which 
cooperative interactions between linked ML, groups 
increase to an extent that results in macroscopic 
distortion effects: The steep slope of the probability 
curves P~c")(x) suggests a definition of the x values, at 
which just half of all ions M belong to clusters wi th j  > 
c ML,, polyhedra, as 'critical' concentrations r t~) for m e 
cooperative effects. The concentration values thus 
defined are illustrated in Fig. 6 with their dependence 
on c. Postulating a specific c value to define a critical 
cluster size would be presumptuous. Nevertheless, the 
x c values for a given v draw considerably closer if c is 
taken in the range ~4 .  These findings allow the 
following conclusion, based on the assumption of a 
statistical distribution of foreign ions M incorporated 
into a matrix compound: Clusters which contain half of 
the ions M (corresponding to a molar fraction xc/2 ) 
and have sizes j > c of at least 5 to 9 linked ML,, 
groups, exist in the concentration ranges of xc ,~ 
75 (¥6), 47 (¥4), 37 (¥4), and 3 0 ( ¥ 3 ) %  in two-, 
three-, four- and six-connected systems (1D and 2D 
structures), respectively (Fig. 6). These results may be 
applied to a series of model compounds containing 
chains of two-connected or nets of v-connected coor- 
dination groups (Table 1). 

1.0 

0.8 

x ~ 

06 

0.4 

0.2 

c P~"l(xy-- 0.5 

'+1 
':,?., 
~ , . , ,  

4 . 

0 

Fig. 6. Concentrations ~e"c~, where just xc/2 of M belong to clusters 
of more than c coordination polyhedra ML, in 1D (v = 2) and 
2D (v = 3, 4, 6) mixed crystals containing chains and layers, 
respectively, of ~[A ~_xMxL,,,] units [ranges of increasing cluster 
probabilities (c > 7) are emphasized by hatching]. 
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Application 

In Table 1 some examples of structure types con- 
taining v-connected coordination groups of various 
geometrical shapes are collected. Not all of them may 
be suitable as model compounds for the incorporation 
of obstinate foreign ions inducing specific cooperative 
effects. Nevertheless, sufficient examples remain for 
investigations of relations between experimental data 
and the statistical results obtained on ion distribution in 
mixed crystals. 

One example of Cu2+-containing solid solutions 
exhaustively investigated by Friebel, Propach & Reinen 
(1976) is the mixed-crystal series BaEZn ~_xcuxF6 con- 
taining four-connected nets of coordination octahedra 
sharing four vertices (Table 1). Whereas in the host 
lattice BazZnF6 (space group I422) the ZnF 6 octa- 
hedra are tetragonally compressed in the direction 
perpendicular to the layers (von Schnering, 1967), the 
compound BaECuF 6 (space group Bbam) contains 
elongated C u F  6 octahedra in a disturbed type of 

g{l lal g l i c l  

V 11111 

, (I) 

g(llc) 

2'.5 ' 2'4 ' 2'3 ' 212 ' 211 ' 2!0 ' 1/9 
g ,  

Fig. 7. EPR spectra (35 GHz, 295 K) of Ba2Zno.9Cu0.tE6 (I) with 
isolated tetragonally compressed CuF6 octahedra. BazCuF 6 (II) 
and K2CuF 4 ( l id  with elongated CuE 6 octahedra in disturbed 
(II) and non-disturbed ([H) antiferrodistortive order (Reinen & 
Friebel, 1979). 

 zoic  
(a) (b) 

Fig. 8. The change from (a) ferrodistortively ordered tetragonally 
compressed to (b) antiferrodistortively ordered elongated coordi- 
nation octahedra in mixed crystals (BaF)2[Zn~_xCuxF4] of a 
four-connected 2D structure [view into (001) plane of Ba2ZnF 6 
structure; the arrows indicate additional rotations of the CuF 6 
polyhedra around [001] in Ba2CuF 6 yielding a disturbance of the 
antiferrodistortive order]. 

'antiferrodistortive order' (von Schnering, 1973; 
Friebel, 1974; Reinen & Weitzel, 1977) (see Fig. 8b). 

In all cases of cubic site symmetry a tetragonal elon- 
gation of the regular CuL 6 octahedron is favoured, 
though a compression of the coordination octahedron 
would also lift the twofold orbital degeneracy of the 2Eg 
ground state of the Cu 2÷ ion (Friebel & Reinen, 1974). 
The present symmetry of the Zn 2+ sites in Ba2ZnF 6 
forces the Cu 2÷ ions into tetragonally compressed octa- 
hedral coordination as long as cooperative interactions 
between several C u F  6 polyhedra are to be neglected or 
weak. From the EPR data a striking difference is to be 
found between the spectra of isolated Cu 2÷ centres in 
tetragonally compressed octahedral coordination and 
those of clusters with elongated CuF 6 octahedra in 
(disturbed) antiferrodistortive order (Fig. 7). Referring 
to the experimental results (Friebel, Propach & Reinen, 
1976) cooperative effects have not been observed at 
Cu 2+ concentrations x < 0.30. In the range 0.30 < x < 
0.45, however, the beginning of a transition from 
isolated compressed to elongated octahedra, which are 
cooperatively ordered, is indicated by an orthorhombic 
symmetry component of the CuF 6 polyhedra. Then, at 
concentrations x > 0.45, the elongated distortion 
becomes predominant as a consequence of increasing 
cooperative Jahn-Teller interactions. This transition 
may take place simply by shifting the F-  ligands of four 
connected compressed CuF 6 octahedra in such a way 
that alternately two of the four long C u - F  bonds 
would be lengthened and the other two shortened (Fig. 
8). 

It is of interest to state that the concentration range 
0.3 < x < 0.45, in which cooperative effects become 
effective, is in agreement with x~c 4) in the range 3 <~ c < 
12 (Fig. 6). An investigation of K2Znl_xCuxF 4 mixed 
crystals (K2NiF 4 lattice type, Table 1) has yielded 
similar results (Krause & Reinen, 1979). 

Stimulating discussions with Dr V. Propach who has 
written the programs for computing the probability 
functions drawn in the figures are gratefully acknow- 
ledged. The author is also indebted to Professor G. 
Harder (Gesamthochschule Wuppertal) for advice con- 
cerning the mathematical notation. 

APPENDIX 
Procedure for calculating 2PltV)(x) 

For computing numerically the probability functions 
2p)o) (x) [equation (3)], the calculation of 

y. f(K)(1 -- x) -a"{x) = U (5) 
K 

is performed in three steps. 
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(1) After noting down the complete set of K = k) ~) 
(cf. Fig. 3) the sum total ~ K (Table 2) is separated 
into partial sums K(s, Au), representing the numbers of  
all configurations k~ ") having equal symmetry s, and the 
same number u of unoccupied adjacent sites; accor- 
dingly the same parameter 

Au(K) = w -  u(K), (6) 

used in equation (3). 
(2) The partial sums K(s, Au) listed in Table 2(a), (b) 

and (c) for v = 3, 4, and 6, respectively, render feasible 
the summations of the products K(s, Au).f(s) with 

Table 2. Classification of  the sum ( ~ K )  o f  all con- 
figurations [ K (~) = kj ] o f j  v-connected M L ,  groups in 

2D mixed crystals into partial sums K(s,Au) 

s = s y m m e t r y  o f  K ;  f = n u m b e r  o f  n o n - e q u i v a l e n t  o r i e n t a t i o n s  o f  

K ;  A u  = d i f f e r e n c e  b e t w e e n  t h e  m a x i m a l  n u m b e r  ( w )  a n d  t h e  a c t u a l  

o n e  ( u )  o f  s i t e s  a d j a c e n t  t o  K a n d  o c c u p i e d  b y  i o n s  A o f  t h e  m a t r i x  

c o m p o u n d  [ e q u a t i o n  ( 6 ) ] ;  b o x e d  n u m b e r s  = p a r a m e t e r s  F ( A u )  

r e s u l t i n g  f r o m  e q u a t i o n  (7) .  

( a )  v = 3 

j Z K  s f *  

1 1 3 m  1 

2 1 m m 2 -  3/2 

3 I m 3 

4 4 m 3 

2 3/2 
3m 1 

5 6 1 3 
m 3 

6 19 1 3 
m 3 
2 3/2 

turn3 3/2 
6ram I /2 

7 43 l 3 
m 3 
3 l 

8 120 1 3 
m 3 
2 3/2 

ram2 3/2 

9 307 1 3 
m 3 

3m 1 

10 866 1 3 
m 3 
2 3/2 

m m 2  3/2 
3 I 

3m 1 

0 1 2 3 4 

1 

[] 
1 nz?q 
1 

[] 
1 

2 
1 

[] 
4 
I 1 

rr51 [] 
6 4 - 
2 1 - 
4 - - 

1 - - 

18 18 - 
2 2 1 
2 

32 56 6 
4 3 4 

1 0  - 4 

78 152 60 4 
4 5 3 - 

150 384 226 34 
7 5 12 2 

20 - 18 - 
- -  - -  2 - 

2 - - 2 
1 

* The occurrence of  half  numbers  for f results from the fact that trigonally 
coordinated points of  the hexagon net belong to triangles, the apices of  which point on 
the one side upwards  and on the other side downwards  (Fig. 2a). Rotat ions of  K 
resulting in identical configurations with oppositely arranged triangles are not  allowed 
to be counted. 

( b )  v = 4 

j X, SK s f 

1 1 4 m m  I 

2 1 m m 2  2 

3 2 m 4 
ram2 2 

4 7 1 4 
m 4 
2 2 

ram2 2 
4ram 1 

5 18 1 4 
m 4 
2 2 

m m 2  2 
4 m m  1 

6 60 I 4 
rn 4 
2 2 

rnm2 2 

7 196 I 4 
m 4 
2 2 

m m 2  2 

8 704 I 4 
m 4 
2 2 

ram2 2 
4 1 

4ram 1 

9 2483 I 4 
m 4 
2 2 

mm2 2 
4 m m  I 

(c) v = 6 

j Z K  s 

I 1 6mm 

2 1 ram2 

3 3 m 
turn2 

3m 

4 10 1 
m 
2 

m m 2  
3m 

5 33 1 
m 

2 
m m 2  

6 147 1 
m 
2 

rnm2 
3 

3m 
6 m m  

7 620 1 
m 

2 
ram2 

3 
3m 

6 m m  

Table 2 (cont.) 

0 I 2 3 4 5 6 7 8 9 

1 

[] 
1 

[] 
- 1 

1 

- -  2 - 

- - 1 

- - 2 

I - - 

- 2 4 4 - 

- 1 2 1 - 

- -  - -  2 - - 

l . . . .  

- 4 1 0  2 0  6 - 

- - 3 - 4 1 

- - 4 - 6 - 

1 I 

- 4 2 0  5 4  5 4  3 2  4 

- 1 3 3 6 2 1 

- - 4 - 4 - - 

1 2 1 

- 6 3 0  1 2 0  1 8 4  1 9 4  8 0  1 8  - 

- - 5 - 1 0  2 9 2 - 

- - 6 - 1 6  - 1 4  - - 

I - - - 1 - 1 - 2 

. . . . . .  2 - - 

- 6 46 208 494 682 588 282 64 6 
- 1 5 4 1 3  1 1  1 5  6 7 1 

- - 6 - 1 6  - 1 2  - 4 - 

1 - - - 2 - - - 1 - 

Au 

f 0 1 2 3 4 5 6 

1 1 
[] 

3 1 
[] 

6 I - 
3 1 - 

6 2 2 - 
6 1 - - 
3 2 - - 
3 1 - 1 
2 1 

6 10 8 2 - 
6 4 3 I 1 
3 2 - - - 
3 @ I ~ ]  [ ~ ]  [ ~  

6 40 48 20 6 
6 6 1 3 1 
3 8 - 4 - 
3 2 - 1 - 
2 - 2 - - 
2 . . . .  

6 152 206 126 54 
6 11 9 11 7 
3 8 - 6 - 
3 2 - - - 
2 2 - - - 
2 1 - - - 

1 

2 

1 

16 4 - 
2 1 - 

1 - - 
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respect to s. By this procedure one obtains the 
parameters 

~. K(s, Au). f ( s )  = F(Au), (7) 
$ 

specified in Table 2 by boxes. 
(3) Henceforth, with regard to the relation of 

F(Au)(1 -- x)  -au = U (8) 
Au 

to equation (5) the calculation of U is easily completed. 
Selecting, for example, the probability 2p~3) one 

obtains from Table 2(a) 

Uv ~3) = 62 + 60(1 - x )  -1 + 3(1 - x )  -2. (9) 

Taking w~ 3) = 9 the complete numerical expression 

2P~v3) = 7 x 6 ( 1 -  x )V[62(1-x)  2 + 6 0 ( 1 - x )  + 3] (10) 

is obtained from equation (3). 
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Temperature Dependence of the Atomic Thermal Displacements in UO2: A Test Case for 
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Abstract 

The neutron diffraction powder pattern of UO 2 has 
been recorded at five temperatures between 293 and 
1733 K, and the data have been analysed by two 
methods: the Rietveld profile-refinement procedure and 

0567-7394/80/020265-06501.00 

the more conventional approach based on independent 
integrated intensities. The structural parameters (i.e. 
the thermal amplitudes of the U and O atoms) derived 
by the two methods do not differ significantly, but the 
e.s.d.'s of the parameters given by the Rietveld treat- 
ment differ at some temperatures from those obtained 
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